生态环境中心曲久辉院士团队在离子跨膜传输脱水合机制研究取得重要进展

中国科学院生态环境研究中心曲久辉院士团队与耶鲁大学MenachemElimelech研究组、华东理工大学化学与分子工程学院合作,在水合离子跨膜传输脱水合机制研究方面取得重要进展。纳米通道内水合离子的传输现象普遍存在于生物系统和膜分离应用中。阐明水合离子在限域传输过程中与膜孔之间的结构匹配机制,对于提高离子选择性,优化膜分离效率至关重要。

中国科学院生态环境研究中心曲久辉院士团队与耶鲁大学Menachem Elimelech研究组、华东理工大学化学与分子工程学院合作,在水合离子跨膜传输脱水合机制研究方面取得重要进展。相关成果以“In Situ Characterization of Dehydration during Ion Transport in Polymeric Nano channels”为题,发表于化学领域顶级期刊—美国化学学会会刊(J. Am. Chem. Soc.,DOI:10.1021/jacs.1c05765.)。

纳米通道内水合离子的传输现象普遍存在于生物系统和膜分离应用中。阐明水合离子在限域传输过程中与膜孔之间的结构匹配机制,对于提高离子选择性,优化膜分离效率至关重要。然而,由于缺乏可靠的原位表征技术,人们对于水合离子在纳米通道传输过程中的动态结构转化机制知之甚少,这阻碍了离子限域传输和分离的原理认知和技术进步。

图1. NaCl溶液经NF90过滤前后hI+分布的变化

研究团队将飞行时间-二次离子质谱(ToF-SIMS)与微流控过滤装置耦合,首次实现了水合离子跨膜传输过程中脱水合现象的原位观测。研究结果表明,水合钠离子(H2O)nNa+(n=1~6)在体相溶液中水合数分布呈现以(H2O)3Na+为优势形态的类正态分布。当溶液pH提高时,由于电荷屏蔽效应,将导致(H2O)nNa+水合分布向小水合方向偏移,优势形态转变为 (H2O) Na+。而经过聚酰胺钠滤膜NF 90截留,水合数大于2的水合钠离子比例显著下降,(H2O) Na+及(H2O)2Na+成为优势形态,平均水合数从3.03减少至1.86(图1),这是首次从实验角度证实了孔道尺寸效应所引起的水合离子脱水合现象。

图2.水合离子在聚酰胺滤膜纳米孔道内的传输机制示意图

研究团队还选取不同孔径大小的聚酰胺滤膜对水合钠离子进行截留,进一步验证了孔径大小与水合离子尺寸之间的匹配关系。(i)当滤膜孔径大于水合离子时,水合离子跨膜后比例随水合数增加而下降,(H2O) Na+成为优势形态。这是由于在非限域传输过程中,水合数较少的水合离子具有更高的传输速率,导致其在跨膜后比例较高。(ii) 当滤膜孔径小于水合离子时,由于孔径的限制,较大的水合离子将发生脱水合,部分脱除结合水。实验观测到在限域纳米孔道内,水合数小于3的水合离子才能发生跨膜传输。对于水合钾离子和水合锂离子也观测到了一致的传输规律。此外,作者还发现,膜孔内部的离子化羧基与脱水合离子之间具有较强的粘性效应,这种源自静电相互作用的粘性力会阻碍部分脱水合离子在孔道内部的传输(图2)。

该研究成果是纳米流体领域的重大技术飞跃,在离子分离、生物传感和电池应用等方面具有重要指导意义。

该工作得到了国家自然科学基金,中国科学院基础前沿科学研究计划“从0到1”原始创新项目,中科院生态环境研究中心杰出创新计划,美国国家科学基金的支持。论文的第一作者是博士生陆成海,通讯作者是中科院生态环境研究中心胡承志研究员、曲久辉院士以及耶鲁大学Menachem Elimelech教授。

本文版权归原作者所有,文章内容不代表平台观点或立场。如有关于文章内容、版权或其他问题请与我方联系,我方将在核实情况后对相关内容做删除或保留处理!联系邮箱: yzhao@koushare.com

随便看看别的百科